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Variational Stochastic Procedure for Broken
Symmetry Phase and Fermionic Fields

A. BeÂrard1 and Y. Grandati1
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Stochastic quantization of the O(N ) w 4-field theory is studied in the broken
symmetry phase by a variational approach. The resulting integral equation is
solved analytically to any order in 1/N expansion. This method is adapted to
fermionic models. In particular, an analytic fermionic toy model is introduced in
D 5 0 and we argue that the D-dimensional case is directly accessible in this way.

1. INTRODUCTION

The stochastic quantization method, introduced by Parisi and Wu [1],

gives quantum field theory as the thermal equilibrium limit of a hypothetical

stochastic process with respect to a new variable: the stochastic time. It

provides a framework in which most of the usual techniques in quantum
field theory can be used, such as perturbation expansions or dimensional

regularization. It also enables us to develop specific treatments for the quanti-

zation of nonperturbat ive solutions, for instance, the stochastic quantization

of instantons in the sine-Gordon and w 4 models [2].

On the other hand, Ito and Morita have introduced [3] a stochastic
Schwinger±Dyson equation which in the equilibrium limit produces the ordi-

nary Schwinger±Dyson equation. The aim was a new approach to studying the

spontaneous breakdown of symmetry of the w 4, Goldstone, and Nambu±Jona-

Lasinio models.

This stochastic process also can be described by a Langevin equation,

which is a parabolic differential equation involving a random source function.
In this context, we have shown that, for O(N ) scalar field theory, a variational

solution of this equation can be built recursively by a 1/N expansion [4].
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Our goal in this paper is to examine the spontaneous symmetry-breaking

phenomenon in the framework of this variational procedure. In Section 2 we

recall briefly the essential features of stochastic quantization and we introduce,
through the example of free boson theory, the calculation of the two-point

Green function in stochastic quantization by using integral kernels. The study

of the O(N ) w 4-model with symmetry breaking is done in Section 3; we find

again the usual behavior of the standard theory in the large-N limit. Then

we introduce the variational approach and give a method for calculating the

higher orders in 1/N. After introducing an analytic fermionic toy model,
which we are able to treat using the variational approach, we finally discuss

in Section 4 the possibility to extend this variational process to the study of

more elaborate fermionic theories.

2. USUAL STOCHASTIC QUANTIZATION

In stochastic quantization a fictitious time t is introduced and the fields
of the theory are supposed to satisfy a Langevin equation in this new variable.

For a field w in a D-dimensional Euclidean space, this equation is

- w i (x, t)

- t
5 2

d SE[ f ]

d f i (x, t)
1 u i (x, t) (1)

where SE[ f ] is the Euclidean action of the theory and u i (x, t) is a Gaussian

white noise field satisfying

H ^ u i (x, t) & u 5 0

^ u i (x, t) u j (x8, t8) & u 5 2 d D(x 2 x8) d (t 2 t8) d i8j
(2)

The generalization of these formulas is Wick’ s theorem:

K p 2n

i 5 1

u (xi , ti) L s
5

1

2nn! o
p P S2m

p
n

j 5 1

^ u (xp(2j 2 1), tp(2j 2 1)) & u ^ u (xp(2j), tp(2j)) & u

5 Hf( ^ u (xj , tj) u (xi , ti) & u )

where Sn is the permutation group of n elements and Hf(M ) is the Hafnian

of the matrix M.

Therefore the stochastic expectation value of a function F [ u ] is given by

^ F [ u ] & u 5 # D u F [ u ] exp F 2
1

4 # d Dx u 2(x) G
Let us study the simple example of the free boson theory. The corresponding

action, extended in the fictitious time, is
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SE[ f ] 5 # d Dx dt f i (x, t) D ij(x 2 y) f j (y, t)

where D ij(x 2 y) 5 (M 1 m 2) d D (x 2 y) d ij.

The general Langevin equation can be equivalently rewritten with the
introduction of an integral kernel:

- w i (x, t)

- t
5 # d Py Kij(x, y)

d SE[ f ]

d f j (x, t)
1 u i (x, t)

5 # d Py d Pz Kij(x, y) D jk( y 2 z) f k(z) 1 u i (x, t) (3)

under the condition that the noise correlation is modified as follows:

^ u i (x, t) u j (x8, t8) & u 5 2Kij(x, x8) d (t 2 t8)

If we take Ki,j (x, y) 5 [ D ij(x 2 y)] 2 1, Equation (3) simplifies to

- w i (x, t)

- t
5 2 w i (x, t) 1 u i (x, t) (4)

Its solution is then clearly

- w i (x, t)

- t
5 #

1 `

0

dt8 exp[ 2 (t 2 t8)] u i (x, t8) 1 ce 2 t

The second term of this solution disappears in the equilibrium limit. The

correlation functions are readily obtained by using

^ u i (x, t) u j (x8, t8) & u 5 2(M 1 m 2) d D(x 2 x8) d (t 2 t8) d ij

For instance, we have

lim
t ® `

^ w (x, t) w (x8, t8) & u 5 # d Dp

(2 p )D

N

p 2 1 m 2

We finally see that, with this trick, all the specific information about the
theory (e.g., its free propagator) is completely contained in the expectation

values of the Gaussian noise. We shall use this approach extensively in the

rest of the paper.

3. SYMMETRY BREAKING IN THE O(N) w 4-MODEL

3.1. Simplified Large-N Limit

In this section we extend the variational method discussed in refs. 5 and

6 to models presenting spontaneous symmetry breaking. It is shown that in
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this large-N limit, the Langevin equation of stochastic quantization offers a

direct and simple way to determine the mass gap of the theory.

The Euclidean ª stochasticº action of the O(N ) w 4-model reads

S [ w ] 5 # d Dx dt F 1

2
- m f (x, t) - m f (x, t) 1

1

2
m 2 f 2(x, t)

1
l

4!N
f 4(x, t) G (5)

where

f 2(x, t) 5 o
N

i 5 1

f i (x, t) f i (x, t)

The Langevin equation is

- w i (x, t)

- t
5 2 ( 2 M 1 m 2) f i (x, t) 2

l
3!N

f 2(x, t) f i (x, t) 1 u i (x, t) (6)

Let us rewrite the field f i in the form

f i (x, t) 5 a ! N d i, N 1 f Ä i (x, t) (7)

where a is a constant.

Without loss of generality, we can make the hypothesis that the possibility

of symmetry breaking occurs only on the direction of the Nth component.

Using (3.3) in the Langevin equation (3.2), we obtain

- w Ä i (x, t)

- t
5 2 ( 2 M 1 m 2) f Ä i (x, t)

2
l

3!N
( a 2N 1 f 2(x, t) 1 2 a ! N f Ä N(x, t) 1 f Ä i (x, t))

2 1 m 2 1
l

3!N
( a 2N 1 f Ä 2 1 2 a ! N) 2 a ! N d iN 1 u i (x, t) (8)

If we are looking for the strict N ® ` limit, we can use the factorization

property of Migdal [7] and Witten [8]:

lim
N ® `

f 2(x, t) 5 ^ f 2(x, t) & u 5 s (t) (9)

Therefore, in this large-N limit and at equilibrium, we find



Variational Stochastic Procedure for Broken Symmetry Phase 627

- w Ä i (x, t)

- t
5 2 F 2 M 1 m 2 1

l
3!N

( a 2
0 N 1 s 0 1 2 a 0 ! N f Ä N (x, t)) G f Ä i (x, t)

2 F m 2 1
l

3!N
( a 2

0 N 1 s 0 1 2 ! N a 0 f Ä N (x, t)) G a 0 ! N d iN

1 u i (x, t) (10)

where

5 a 0 5 lim
N ® `

a

a 0 5 lim
t ® `

s (t)
(11)

Two possibilities occur:

? If a 0 5 0, equation (3.6) gives

lim
N ® `

^ f Ä i (x f Ä i (x) & 5 s 0 5 # d Dp

(2 p )D

N

p 2 1 m 2 1 ( l /3!N ) s 0

(12)

with

S 0 5 m 2 1
l

3!N
s 0 (13)

Combining (3.8) and (3.9), we then have

S 0 5 m 2 1
l

3!N # d Dp

(2 p )D

1

p 2 1 S 0

(14)

This is the well-known gap equation for the model under study.

If a 0 Þ 0 and m 2 1 ( l /3!N )( a 2
0 N 1 s 0 1 2 a 0 ! N f Ä N (x, t)), equation

(3.6) becomes

- w i (x, t)

- t
5 f Ä i(x, t) 1 u i (x, t)

Then S 0 5 0.

We can remark that, since

a 2
0 1

2

! N
f Ä N(0) a 0 1

3!

l
m 2 1

s 0

N
5 0

i.e., a 0 5 2
2

! N
f N(0) 6 ! f Ä 2

N(0)

N 2 2 F 1 3!

l 2 m 2 1
s 0

N G
in the case where f Ä N (0) 5 0, we find
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a 2
0 5 2 1 3!

l
m 2 1 # d Dp

(2 p )D

1

p 2 2
At the initial point we have a 2

0 5 2 (3!/ l ) (m 2 2 m 2
c) where

m 2
c 5 2

3!

l # d Dp

(2 p )D

1

p 2

This result is consistent with the well known Mermin±Wagner theorem,

which, in D # 2, forbids a phase transition with continuous symmetry break-

ing [9].

It is important to note that in this large-N limit, the internal and external

symmetries are broken at the same critical point

3.2. Variational Approach

Equation (2.1) can be rewritten in integral form as

f i (x, t) 5 # d D x dt Gm2(x 2 x8; t 2 t8) F h i (x, t) 2 l ?
d S int

E [ f ]

d f i (x8, t8) G
Let f [ a , s ]

i (x, t) be a trial field depending upon a set of parameters { a , s },

where a is a constant parameter and s (q) a functional parameter. Then,

minimizing

V [ a , s ] 5 lim
t ® ` K Tr F f [ a , s ]

i (x, t) 2 # d D x dt Gm2(x 2 x8; t 2 t8)

3 1 u i(x8, t8) 2 l
d S int

E [ f ]

d f i(x8, t8) 2 G L u

5 lim
t ® `

^ Tr[ f [ a , s ]
i (x, t) f Ä i (x, t)]2 & u (15)

for all { a , s } leads to the best variational answer for a given choice of

f [ a , s ]
i [4].

Equation (6) is expressible in momentum space with the introduction
of an integral kernel, as in Section 2:

- f i (p, t)

- t
5 2 f i ( p, t) 2

l
3!N

1

p 2 1 m 2

3 # d Dq

(2 p )D

d Dk

(2 p )D f j (q, t) f j (k, t) f i ( p 2 q 1 k, t) 1 u i ( p, t)

with
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^ u i (p, t) u j ( p8, t8) & s 5
d D ( p 1 p8)

p 2 1 m 2 d (t 2 t8) d ij (16)

For studying the symmetry-breaking phenomenon, the variational field will

be taken in the following form:

f [ a , s ]
i (x, t) 5 a d iN ! N d D( p) 1 #

1 `

2 `

dt G s (0; t 2 t8) u i (p, t8)

5 a d iN ! N d D( p) 1 f [ s ]
i ( p, t)

where Ga(0; t 2 t8) 5 u (t 2 t8) exp[ 2 a (t 2 t8)]. We then arrive at

lim
t ® `

^ f [ a , s ]
i (x, t) f [ a , s ]

i (x, t) & u 5 N F a 2 1 # d D q

(2 p )D

1

p 2 1 m 2 G
and f Ä i ( p, t) is written as

f Ä i ( p, t) 5 f [1]
i ( p, t) 1

l
3!N

1

p 2 1 m 2 # d Dk

(2 p )D

d Dq

(2 p )D #
1 `

0

dt8 G1(0; t 2 t8)

3 f [ a , s ]
j (q, t8) f [ a , s ]

j (k, t8) f [ a , s ]
i ( p 2 q 1 k, t8)

After calculations, the variational potential is obtained as

V [ a , s ]

5 # d Dp

(2 p )D F 1 2 s ( p) 1 1 1 1
2

N 2 l
3!

1

p 2 1 m 2

3 1 a 2 1 # d Dk

(2 p )D

1

(k 2 1 m 2) s (k) 2 G
2

3 { s ( p) [1 1 s ( p)] ( p2 1 m 2)} 2 1

1 a 2 F 1 1
l

3!m 2 1 a 2 1 1 1 1
2

N 2 # d Dp

(2 p )D

1

( p2 1 m 2) s ( p) 2 G
2

1
4 a 4 l
3!Nm2 1 1 2

1

N 2 # d Dp /(2p )D

( p2 1 m 2) s ( p)

1
l 2

(3!)2

2

N 1 1 1
2

N 2 # d Dp

(2 p )D

1

p 2 1 m 2

3 F # d Dq

(2 p )D

3 a 2

(q 2 1 m 2)[( p 2 q)2 1 m 2] s (q)
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3
1

s ( p 2 q)[1 1 s (q) 1 s ( p 2 q)]

1 # d Dq

(2 p )D

d Dk

(2 p )D

1

(q 2 1 m 2)(k 2 1 m 2) s (q) s (k)

3
1

s ( p 2 q 1 k) [( p 2 q 1 k)2 1 m 2] [1 1 s (q) 1 s (k) 1 s ( p 2 q 1 k)] G
(17)

x In the large-N limit the preceding result becomes

lim
N ® `

V [ a , s ] 5 # d Dp

(2 p )D F 1 2 s 0( p 1
l
3!

1

p 2 1 m 2

3 1 a 2 1 # d Dk

(2 p )D

1

s 0(k (k 2 1 m 2) 2 G
2

3 { s 0( p)( p2 1 m 2) [1 1 s 0( p]} 2 1

1 a 2
0 F 1 1

l
3!m 2 1 a 2

0 1 # d Dp

(2 p )D

1

s 0( p)( p2 1 m 2) 2 G
2

(18)

Taking S ( p) 1 p 2 5 s ( p) ( p2 1 m 2), we have

lim
N ® `

V [ a , s ] 5 # d Dp

(2 p )D F m 2 2 o 0( p) 1
l
3! 1 a 2

0 1 # d Dk

(2 p )D

1

k 2 1 ( 0(k) 2 G
2

3 {[p 2 1 o 0( p)]( p2 1 m 2)[p 2 1 m 2 1 ( 0( p)]} 2 1

1 a 2
0 F 1 1

l
3!m 2 1 a 2

0 1 # d Dp

(2 p )D

1

p 2 1 ( 0( p) 2 G
2

(19)

After minimization with respect to the parameters a 0 and s 0, we obtain in

the same way as before:

x If a 0 5 0, then

S 0( p) 5 S 0 5 m 2 1
l
3! # d D p

(2 p )D

1

p 2 1 S 0

x If a 0 Þ 0, then
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S 0 5 0 and a 2
0 5 2

3!m 2

l
2 # d D p

(2 p )D

1

p 2 5 2
3!

l
(m 2 2 m 2

0)

3.3. Calculation of Higher Orders in 1/N

By the same iterative procedure as in ref. 5, we can deduce an integral

equation for higher order corrections in 1/N. Let us put

{a1 5 a , a2(q) 5 S (q)

V (ai) 5 o
nmax

n 5 0 1 1

N 2
n

Vn[ai], F j
n[ai] 5

- Vn[ai]

- aj (q)

The minimization equation is written as

# d Dr

(2 p )D o
2

l 5 1

a l
n

- F j
0[ai (q)]

- a l(r)
5 2 F j

n[a
i
0(q)]

In our case, it corresponds to the following system:

5
a 2

n
- 2V0[ a , S ]

- a 2 - a 2 Z a 5 a 0
S 5 S 0

1 # d Dr

(2 p )D S n(r)
- 2V0[ a , S ]

- S (r) - a 2 Z a 5 a 0
S 5 S 0

5 2 F 1
n(q)

a 2
n

- 2V0[ a , S ]

- a 2 - S (q) Z a 5 a 0
S 5 S 0

1 # d Dr

(2 p )D S n(r)
- 2V0[ a , S ]

- S (r) - S (q) Z a 5 a 0
S 5 S 0

5 2 F 2
n(q)

In the following, we will be only interested in the asymmetric phase, the

symmetric phase having been already studied in ref. 5. We then have

a 2
0 5 2

3!

l
m 2 2 # d Dr

(2 p )D

1

p 2, S 0 5 0

After calculations, the preceding system takes the form

5
A a 2

n 2 # d Dr

(2 p )D S n(r)C (r) 5 F

2 C a 2
n 1 1 3!

l 2
2

S n(q)D (q) 1 # d Dr

(2 p )D S n(r)E(q, r) 5 G (q)

where F and G (q) are variable functions of F i
n(q), and

D (q) 5
1

q 2(q 2 1 m 2)
; D 5 # d Dr

(2 p )D D (q)

A 5 D 1
a 2

0

m 4 ; C (q) 5
3!

l
D (q) 1

A

q 4
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E (q, t) 5
3!

l
D (q)

r 4 1
C (r)

q 4

Finally, we obtain

a 2
n 5

1

A F # d Dr

(2 p )D S n(r)C (q) 1 F G
with

S n(q) 2 # d Dr

(2 p )D S n(r)
D (r)

A
5 H (q)

where H (q) depends on G (q) and F. To solve the last equation, it is sufficient
to pose

a 5 # d Dr

(2 p )D S n(r)
D (r)

A

Then S n(q) 5 H (q) 1 a, where

a 5 H # d Dr

(2 p )D H (r) J Y H 1 2 # d Dr

(2 p )D

D (r)

A J
a is well defined and positive, since

A 5 D 1
a 2

0

m 4 5 2
1

m 4 F # d Dr

(2 p )D

p 2 1 m 2

( p2 1 m 2)2 1
3!m 2

l G
is negative.

Hence we have shown that it is possible to determine successively all

the coefficients of the expansion of a n and S n(q) up to a given order in 1/N.

4. TOY FERMIONIC MODEL

The extension of the variational scheme to fermionic theories is not

trivial on many points. To see the possibilities of applying this procedure

and also its limitations, we restrict ourselves to the study of a zero-dimensional

toy model.

4.1. Analytic Toy Model

Let us considerer a fermionic model in D 5 0 with an interaction term

of the O (N ) Gross±Neveu type. Its Euclidean action is
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S [ c , c ] 5 m c c 2
g 2

4N
[ c c ]2 (20)

Introducing an auxiliary field s , we can integrate over the fermionic fields.

Then the partition function takes the following form:

Z 5 #
1 `

2 `

d s (m 2 s )N exp 1 2 N

g
s 2 2 5 ( 2 i) 1 ig

2 ! N 2
N

HN 1 2 i
m

g
! N 2

(21)

where HN is the usual Hermite polynomial of degree N.

The correlation function is

1

N
^ c c & 5

1

N

- log Z

- m
5

2i ! N

g

HN 2 1( 2 i(m /g) ! N)

HN( 2 i(m /g) ! N)
(22)

Note the clear relationship between these results and those obtained for the

O (N ) w 4-theory in zero dimension [4], where the Hermite polynomials are
replaced by Hermite functions. The fact that in the present case the partition

function is expressed no longer as an infinite serie in g but as a finite

polynomial in the same variable is a direct consequence of the properties of

the Grassmann variables.

4.2. Simplified Large-N Limit in Stochastic Quantization

Starting from the preceding Euclidean action extended in fictitious time

S [ c , c ] 5 # dt F m c (t) c (t) 2
g 2

4N
( c (t) c (t))2 G (23)

we find the Langevin equations satisfied by the fields c and c :

5
- c i (t)

- t
5 2 m c i (t) 1

g 2

4N
( c j (t) c j (t)) c i (t) 1 h i (t)

- c i (t)

- t
5 2 m c i (t) 1

g 2

4N
( c j (t) c j (t)) c i (t) 1 h i (t)

(24)

The fluctuating noises h i (t) and h i (t) have to be understood as Grassmann

variables, with correlations
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Fig. 1.

^ h i (t) h j (t8) & h 5 2 d (t 2 t8) d ij; ^ h i h j & 5 ^ h i h j & 5 0

where the spinorial indices have been omitted.
The direct construction of a variational stochastic potential as in the

bosonic case is no longer possible. Indeed, the necessary positive-definiteness

of the potential is not always ensured because of anticommutativity properties

of the trial fields.

To avoid these problems we will introduce an auxiliary field [6], which

allows us to lower the degree of nonlinearity of the equation. The action is
then written as

SE[ c , c , s ] 5 # dt F m c i (t) c i (t) 1
N

4
s 2(t) 2

g

2
c i (t) c i (t) s (t) G (25)

and the corresponding Langevin equations take the form
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5
- c i (t)

- t
5 2 m c i (t) 1

g

2
s (t) c i (t) 1 h i (t)

- c i (t)

- t
5 2 m c i (t) 1

g

2
s (t) c i (t) 1 h i (t)

- s (t)

- t
5 2

N

2
s (t) 1

g

2
c j (t) c j (t) 1 u (t)

(26)

with ^ s i (t) s j (t8) & u 5 2 d (t 2 t8) d ij.

By application of the simplified large-N limit [10] we deduce from the
first equation

lim
t ® `
N ® `

^ o
i

c i (t) c i (t) & 5
N

m 2 1±2 g s 0

where lim
N ® `

s (t) 5 s 0, and from the third equation,

g

2
lim
t ® `
N ® `

^ o
i

c i (t) c i (t) & 5
N

2
s 0

Then s 0 5 2 g /(m 2 1±2 g s 0). Putting S 0 5 m 2 1±2 g s 0, we arrive at the

usual gap equation: S 0 5 m 1 g 2/(2 S 0).

4.3. Variational Study

Let us rewrite the auxiliary field as two separate contributions:

s (t) 5 s s(t) 1 s 0, where s 0 5 lim
t ® `
N ® `

^ s (t) &

Then, after introduction of ª integralº kernels, the Langevin equations become

5
- c i (t)

- t
5 2 c i (t) 1

g /2

m 2 1±2 g s 0

s s(t) c i (t) 1 h i (t)

- c i (t)

- t
5 2 c i (t) 1

g /2

m 2 1±2g s 0

s s(t) c i (t) 1 h i (t)

- s (t)

- t
5 2 s s(t) 2 s 0 1

g

2
c j (t) c j (t) 1 u (t)

(27)

with

^ h i (t) h j (t8) & h 5
2 d ij

m 2 1±2 g s 0

d (t 2 t8)

^ u (t) u (t8) & u 5
4

N
d (t 2 t8)
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Now, let us construct a variational stochastic potential in the same way

as in the bosonic case. For this we choose the variational fields as

c [ a ]
i (t) 5 #

`

0

G a (t 2 t8) h i (t8) dt8

s [ b , g ](t) 5 b 1 #
`

0

G g (t 2 t8) u (t8) dt8 5 b 1 s [ g ]
s (t)

If we note

5
c Ä i (t) 5 #

`

0

G1(t 2 t8) 1 h i (t 8) 1
g /2

m 2 1±2 g s 0

s [ b , g ]
s(t8) c [ a ]

i (t8) 2
s Ä (t8) 5 #

`

0

G1 (t 2 t8) F s (t8) 2 s 0 d (t) 1
g

N
c [ a ]

i (t8) c [ a ]
i (t8) G

The variation potential is then defined by

V [ a ] 5
1

N
lim
t ® `

[ ^ o
N

i 5 1

( c [ a ]
i (t) 2 c Ä i (t)) & h , u ^ o

N

j 5 1

( c [ a ]
j (t) 2 c Ä j (t)) & h , u ]

We have to calculate the following graphs:

cÐ
a

3 Ð
a

c 5
N

a (m 2 1±2 g s 0)

cÐ
1

3 Ð
1

c 5
N

m 2 1±2 g s 0

cÐ
a

3 Ð
1

c 5
2N

(1 1 a )(m 2 1±2 g s 0)

cÐ
a

3 Ð
a

cÐ
1

c 5
N

a (1 1 a )(m 2 1±2 g s 0)

cÐ
1

c
g

Ð
a

3
H

Ð
a

c
g

cÐ
1

c 5
2

a g (1 1 a 1 g )(m 2 1±2 g s 0)

cÐ
1

cÐ
a

3 Ð
a

cÐ
1

c 5
N

a (1 1 a )(m 2 1±2 g s 0)

cÐ
1

cÐ
a

3 Ð
1

c 5
N

(1 1 a )(m 2 1±2 g s 0)
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where the solid and dashed lines correspond, respectively, to the c and s
propagators. We finally obtain

V [ a ] 5
(1 2 a 2)

a (1 1 a )(m 2 1±2 g s 0)
1

g 2/2

N (1 1 a 1 g ) a g (m 2 1±2 g s 0)
3 (28)

4.4. Determination of the b and g Parameters

As seen above, the third Langevin equation in the large N and equilibrium

limits gives

lim
t ® `
N ® `

^ s (t) & 5 2
g

m 2 1±2 g s 0

5 s 0

We can assert that

lim
t ® `
N ® `

^ s (t) & 5 lim
t ® `
N ® `

^ s [ b , g ](t) & u 5 b

which gives

b 5 s 0 5 2
g

m 2 1±2 g s 0

In order to determinate the g parameter, we can follow the same procedure.

Knowing that for the order 1/N we have

lim
t ® `

^ s (t) s (t) & (1) 5 lim
t ® `

d 2S

d s (t) d s (t) Z s 5 s 0

5
2

1 2 [1±2 g /(m 2 1±2 g s 0)
2]

we prescribe now that

^ s (t) s (t) & (1) 5 ^ s [ b , g ](t) s [ b , g ](t) & (1)
u 5 1/ g

and then obtain

g 5
1

2 1 1 2
g 2/2

(m 2 1±2 g s 0)
2 2

The only constraint we impose is the coincidence between the exact and
variational s propagators at order 1/N. Indeed, it is sufficient for our purpose

if we remember that we are only interested in the way to determine the

c propagator.

With this assumption the variational potential can be written as



638 BeÂrard and Grandati

V [ a ] 5
(1 2 a )2

a (1 1 a )(m 2 1±2 g s 0)

1
1

N

g 2

( 3±2 1 a 1 s 2
0 /4)(m 2 1±2 g s 0)

3(1 2 s 2
0 /2)

(29)

In the large-N limit we simply find a 0 5 1.

To obtain the next order, we use the formula

a 1 5 2
F1

- F0 / - a | a 5 a 0 5 1

which gives

a 1 5
(7/3 2 s 2

0 /4)

(5/2 2 s 2
0 /4)2(m 2 1±2 g s 0)

2(1 2 s 2
0 /2)

Finally, we obtain

lim
t ® ` K 1

N L ( c (t) c (t)) &

5
2 1

m 2 1±2 g s 0 1 1 2
1

N

7/2 2 s 2
0 /4

(5/2 2 s 2
0 /4)2(m 2 1±2 g s 0)c

2(1 2 s 2
0 /2) 2 (30)

Figure compares this result to the exact result in the case N 5 3.

We observe that the variational result is considerably more accurate than

the saddle-point approximation. The exact result is between the two latter

approximations. We have reason to hope that this property will be conserved

for higher dimensional theory, because the dimensionality appears to play
only a minor role in the convergence properties of our 1/N expansion scheme,

at least for low orders [5, 6].

5. CONCLUSION

In this paper, we have extended our variational stochastic approach of

O(N ) field theories to the case of asymmetric phase. The systematic introduc-

tion of integral kernels simplifies considerably the calculation of the 1/N
corrections of the self-energy for the w 4-model. We observe that the 1/N
corrections break the phase exclusion property which appears in the saddle-
point approximation.

For fermionic theory, we were led to introduce an auxiliary field as in

ref. 10 in order to lower the degree of nonlinearity of the initial Langevin

equation. It enabled us to avoid the nonpositive terms in the variational
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potential. The method was tested on an analytic zero-dimensional toy model,

and showed good agreement with exact results for the propagators.

The use of composite fields in order to treat the renormalization problem
will be discussed in a forthcoming paper [11]. We will show how the method

developed here enables us to obtain new information about the critical proper-

ties of the theory in both phases.
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